Sparse exponential family Principal Component Analysis

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Principal Component Analysis

Principal component analysis (PCA) is widely used in data processing and dimensionality reduction. However, PCA suffers from the fact that each principal component is a linear combination of all the original variables, thus it is often difficult to interpret the results. We introduce a new method called sparse principal component analysis (SPCA) using the lasso (elastic net) to produce modified...

متن کامل

Supervised Exponential Family Principal Component Analysis via Global Optimization

Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure in the data. In this paper, we present a novel convex supervised dimensionality reduction approach based on exponential family PCA, which is able to avoid the local optima of typical EM learning. Moreover, by introduc...

متن کامل

A Generalization of Principal Component Analysis to the Exponential Family

Principal component analysis (PCA) is a commonly applied technique for dimensionality reduction. PCA implicitly minimizes a squared loss function, which may be inappropriate for data that is not real-valued, such as binary-valued data. This paper draws on ideas from the Exponential family, Generalized linear models, and Bregman distances, to give a generalization of PCA to loss functions that w...

متن کامل

Supervised Exponential Family Principal Component Analysis via Convex Optimization

Recently, supervised dimensionality reduction has been gaining attention, owing to the realization that data labels are often available and indicate important underlying structure in the data. In this paper, we present a novel convex supervised dimensionality reduction approach based on exponential family PCA, which is able to avoid the local optima of typical EM learning. Moreover, by introduc...

متن کامل

Joint sparse principal component analysis

Principal component analysis (PCA) is widely used in dimensionality reduction. A lot of variants of PCA have been proposed to improve the robustness of the algorithm. However, the existing methods either cannot select the useful features consistently or is still sensitive to outliers, which will depress their performance of classification accuracy. In this paper, a novel approach called joint s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Pattern Recognition

سال: 2016

ISSN: 0031-3203

DOI: 10.1016/j.patcog.2016.05.024